Comparision of Joint Space and Task Space Integral Sliding Mode Controller Implementations for a 6DOF Parallel Robot

نویسندگان

  • Dereje Shiferaw
  • Anamika Jain
چکیده

Controllers for parallel manipulators can be designed in task space or joint space, each having its own advantages and disadvantages. In this paper, integral sliding mode controllers designed in joint space and in task space are compared using MATLAB simulation. In both cases, genetic algorithm is used to determine optimal sliding surface gain. The performance and robustness, smoothness of control signal and ease of implementation of the controllers is compared using a smooth trajectory. The performance of the controllers is measured by the mean square value of the tracking error over the whole trajectory while robustness is compared by the percentage error increase in mean square error between no load and full load conditions. Extensive simulations showed that joint space implementation gives slightly bigger mean square error value but needs a small control effort. The control signal is also very smooth in case of joint space. Keywords-Integral sliding mode control, parallel robot, robust control,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic

In industrial robotic manipulator, due to the presence of quite nonlinear dynamic and structural and nonstructural uncertainties, a precise model is not easily obtained. As a result, designing a controller with a suitable function based on system model is a challenging issue. Sliding mode control is a robust control with numerous applications which can overcome the aforementioned uncertainties....

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Task-space Control of Electrically Driven Robots

Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011